Telegram Group & Telegram Channel
Какие метрики качества ранжирования вы знаете?

Такие метрики используются для оценки эффективности алгоритмов ранжирования, часто применяемых в рекомендательных системах.

🟠 Precision at K (p@K). Это метрика качества ранжирования для одного объекта. Измеряет долю релевантных элементов среди первых k элементов в ранжированном списке.
🟠 Mean average precision at K (map@K). Чаще всего мы имеем дело со множеством объектов, а не с одним, например с сотнями тысяч пользователей. Идея map@K заключается в том, чтобы сначала вычислить среднее precision at K для каждого объекта, а затем усреднить итог.
🟠 Normalized Discounted Cumulative Gain (NDCG). Здесь разберём поэтапно:
- Сначала рассмотрим один объект и k наиболее релевантных элементов. Это будет Cumulative gain at K (CG@K), метрика, которая использует простую идею: чем более релевантные элементы в этом топе, тем лучше.
- Далее введём Discounted cumulative gain at K (DCG@K). Это модификация CG@K, учитывающая порядок элементов в списке. Необходимо домножить показатель релевантности элемента на вес равный обратному логарифму номера позиции.
- В конце концов придём к normalized discounted cumulative gain at K (nDCG@K). Это нормализованная версия DCG@K. Данная метрика принимает значения в диапазоне от 0 до 1.
🟠 Mean Reciprocal Rank (MRR). Метрика усредняет обратные ранги первых правильно угаданных элементов по всем объектам.

Формулы можно найти в этой статье

#middle



tg-me.com/ds_interview_lib/121
Create:
Last Update:

Какие метрики качества ранжирования вы знаете?

Такие метрики используются для оценки эффективности алгоритмов ранжирования, часто применяемых в рекомендательных системах.

🟠 Precision at K (p@K). Это метрика качества ранжирования для одного объекта. Измеряет долю релевантных элементов среди первых k элементов в ранжированном списке.
🟠 Mean average precision at K (map@K). Чаще всего мы имеем дело со множеством объектов, а не с одним, например с сотнями тысяч пользователей. Идея map@K заключается в том, чтобы сначала вычислить среднее precision at K для каждого объекта, а затем усреднить итог.
🟠 Normalized Discounted Cumulative Gain (NDCG). Здесь разберём поэтапно:
- Сначала рассмотрим один объект и k наиболее релевантных элементов. Это будет Cumulative gain at K (CG@K), метрика, которая использует простую идею: чем более релевантные элементы в этом топе, тем лучше.
- Далее введём Discounted cumulative gain at K (DCG@K). Это модификация CG@K, учитывающая порядок элементов в списке. Необходимо домножить показатель релевантности элемента на вес равный обратному логарифму номера позиции.
- В конце концов придём к normalized discounted cumulative gain at K (nDCG@K). Это нормализованная версия DCG@K. Данная метрика принимает значения в диапазоне от 0 до 1.
🟠 Mean Reciprocal Rank (MRR). Метрика усредняет обратные ранги первых правильно угаданных элементов по всем объектам.

Формулы можно найти в этой статье

#middle

BY Библиотека собеса по Data Science | вопросы с собеседований


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/ds_interview_lib/121

View MORE
Open in Telegram


Библиотека собеса по Data Science | вопросы с собеседований Telegram | DID YOU KNOW?

Date: |

What is Secret Chats of Telegram

Secret Chats are one of the service’s additional security features; it allows messages to be sent with client-to-client encryption. This setup means that, unlike regular messages, these secret messages can only be accessed from the device’s that initiated and accepted the chat. Additionally, Telegram notes that secret chats leave no trace on the company’s services and offer a self-destruct timer.

Dump Scam in Leaked Telegram Chat

A leaked Telegram discussion by 50 so-called crypto influencers has exposed the extraordinary steps they take in order to profit on the back off unsuspecting defi investors. According to a leaked screenshot of the chat, an elaborate plan to defraud defi investors using the worthless “$Few” tokens had been hatched. $Few tokens would be airdropped to some of the influencers who in turn promoted these to unsuspecting followers on Twitter.

Библиотека собеса по Data Science | вопросы с собеседований from tw


Telegram Библиотека собеса по Data Science | вопросы с собеседований
FROM USA